Alan Kuhnle

20-10-2011

Theorem 1. With the Axiom of Choice, there exists an undetermined game on $\omega^{<\omega}$.

Proof. Notice that a strategy is a function $\sigma: \omega^{<\omega} \to \omega^{<\omega}$. Thus, the set

$$S := \{ \sigma : \sigma \text{ is a strategy } \} = (\omega^{<\omega})^{\omega^{<\omega}},$$

and hence |S| = c (the cardinality of the continuum). With AC we well-order $S = \{\sigma_{\alpha} : \alpha < \mathbf{C}\}$ (here, **C** is the first ordinal with cardinality c).

Now, we construct the payoff set A for the undetermined game. Let $\beta < \mathbf{C}$ be an ordinal, and suppose for all $\alpha < \beta$, $A_{\alpha+1}, B_{\alpha+1} \subset \omega^{\omega}$, have been constructed so that

- there exists $x_{\alpha} \in A_{\alpha+1}$ such that x_{α} respects σ_{α}
- there exists $y_{\alpha} \in B_{\alpha+1}$ such that y_{α} respects σ_{α}
- $A_{\alpha+1} \cap B_{\alpha+1} = \emptyset$
- For all $\gamma < \alpha$, $A_{\gamma+1} \subset A_{\alpha+1}$, and $B_{\gamma+1} \subset B_{\alpha+1}$
- $|A_{\alpha+1}| = |B_{\alpha+1}| = |\alpha+1|$

Now, consider the strategy σ_{β} . It is clear that there are c many ways for one player to play against σ_{β} (the strategy σ_{β} is only employed on his opponent's move). If β is a limit ordinal, define

$$A_{\beta} := \bigcup_{\alpha < \beta} A_{\alpha+1},$$
$$B_{\beta} := \bigcup_{\alpha < \beta} B_{\alpha+1}.$$

Otherwise A_{β}, B_{β} are already defined.

Since

$$|A_{\beta} \cup B_{\beta}| < c$$

there exists $x_{\beta} \in \omega^{\omega}$ that respects σ_{β} with $x \notin A_{\beta} \cup B_{\beta}$. Define

$$A_{\beta+1} := A_{\beta} \cup \{x_{\beta}\}.$$

Similarly find $y_{\beta} \notin A_{\beta} \cup B_{\beta}, y_{\beta} \neq x_{\beta}, y_{\beta}$ respecting σ_{β} . Define

$$B_{\beta+1} := B_{\beta} \cup \{y_{\beta}\}.$$

Then $|A_{\beta+1}| = |\beta + 1| = |B_{\beta+1}|$, and the other properties also hold. Finally, let

$$A := \bigcup_{\alpha < \mathbf{C}} A_{\alpha+1}.$$

With A as the payoff set, neither player can have a winning strategy, since for every strategy employed by one player, the other has at least one sequence of moves that defeats it. Therefore, the game is undetermined.